
1

FavorX Protocol

The Unified Hybrid Data Transport Network For Web3

Abstract

Web3 is in a rapid development process, and the business value brought by decentralized
technology is continuously being discovered and recognized by the industry, while the DEFI
and NFT markets on Ethereum has also proved the value of decentralized finance. The
emergence of GameFI, Web3, the concept of Metaverse, and corresponding prototype
products indicate that decentralized technology is gradually expanding to the mass market.
When decentralization enters the mass market, the decentralized data transmission system
will become an important infrastructure. In early blockchain projects such as public
blockchains, in order to ensure the censorship resistance of transactions, the only transaction
data was transmitted in a network-wide broadcasting manner. In Web3 systems, clients not
only interact with the public chains, but also need to interact with various decentralized
application service backends, such as storage backend and database backend. The BitTorrent
network, IPFS and Swarm/BZZ have already made very useful explorations and laid the
foundation for the decentralized uniform communication protocol - FavorX Protocol .

FavorX Protocol is a complete decentralized data transmission protocol that turns the CDN
into a decentralized trading marketplace, in which tokens (FavDs) are circulated. Miners
provide bandwidth resources to obtain token revenues, while applications pay tokens to use
the data relay services provided by miners. When miners provide data forwarding services,
they will get corresponding token rewards according to the ratio of the bandwidth computing
power they provide across the whole network to the total bandwidth computing power of the
whole network, which is similar to the block height reward mechanism of Bitcoin/Ethereum.
Therefore, in the FavorX network, miners derive their revenues from two sources: the data
traffic revenues generated by providing data relays and the token rewards generated by the
bandwidth computing power.

The FavorX Protocol brings decentralized blockchain capabilities to mobile terminals, and
the FavorX infrastructure and applications are separated. The nodes provided by miners have
routing, data and message relay functions, and are rarely offline after going online. These
nodes are called full nodes in the network, constituting the basic decentralized network.
Meanwhile, the mobile node is always connected to the full nodes, sending requests or
obtaining data through the full nodes, and never providing data and message relay capabilities
to the network. This ability is suitable for the current mobile terminal that will go online and
offline repeatedly, so that the system will not be unstable due to too many mobile terminals.

2

FavorX Protocol is a decentralized data communication network, which implements different
processing modes and accounting models according to different data types: 1. To improve
efficiency while transferring file fragments, a local data cache can be established to enable
repeated access to that file in a short time, with the cost of file transmission being charged on
a per-byte basis. 2. In the transmission of command requests/responses, the charges are based
on the number of frames and the total length. 3. When messages are transmitted, the charges
will be assessed on the number of messages and the total number. 4. Furthermore, the
protocol will allow the application to customize and use a specific accounting scheme. The
flexible accounting scheme allows for a better balance between miners’ revenues and
application costs.

To meet the high-performance and low-cost on-chain computing requirements for accounting,
FavorX Protocol adopts an off-chain accounting and on-chain settlement scheme: Upon
receiving a response, the data requester issues a receipt to the service provider, and the data
service provider collects, merges and Reduces the receipts of the same requester. Every once
in a while, the Reduced receipts of each requester are merged again to form a receipt set and
submitted to the chain for settlement. To meet this settlement requirement, FavorX Protocol
has designed a dedicated chain for processing this dataset, which can operate on its own or as
the Layer2 on an existing public chain (such as BSC/Polygon) for higher security.

FavorX’s work includes:

1) A routing system over P2P adds multicast and unicast capabilities to message and
command relaying on the basis of P2P network-wide broadcasting

2) Optimizing the performance of DHT content distribution to meet the real-time
playback capability of streaming media under high concurrency

3) Defining application-level protocols according to different types of data, including
content distribution, command relaying, message subscription and real-time streaming,
which can meet the data transmission requirements of all current Web3 applications

4) Accounting for content distribution and message/command relaying, calculating the
bandwidth computing power, and then rewarding it

5) A dedicated chain of FavorX Protocol, the performance and cost of which can meet
the requirements of decentralized accounting, rewarding, and operational information

1. Introduction
P2P networks are the underlying communication frameworks of current decentralized
systems, and currently there are mainly two kinds of data transmission approaches in P2P
networks: broadcast-based data communication schemes and distributed hash table (DHT)-
based data transmission schemes. In the system based on public chains, since only
transactions and block contents need to be transmitted on the network, and each node needs
to verify all the transactions and block contents, broadcasting communication is used to
transmit information. In decentralized file transmission systems, such as IPFS and SWARM,

3

since the goal is to transmit a large amount of content to the target endpoint, it is only
necessary to relay and transmit content at the necessary nodes, and it is not necessary or
should not let all nodes read the content, so DHT-based data transmission schemes are
adopted.

With the booming development of industries and blockchain projects, Cosmos and Polka, as
representative products of cross-chain solutions, focus on providing data transit services
between different chains or projects, and different P2P networks, in order to satisfy the
communication needs among different projects via a relay chain. On the other technical route,
attempts are made to provide multiple functionalities such as unicast and multicast of
messages by processing communication protocols, to realize the goal of integrating different
projects into the same P2P network. FavorX Protocol, belonging to the latter solution, adds
routing tables to each node based on the DHT routing scheme, which records the recent paths
to the target node. In addition, it also introduces the concept of virtual connection, which
enables two physically non-adjacent nodes to form a connection logically. The introduction
of the concept of a group enables virtual connections to be formed among nodes within the
group, enabling broadcast of messages within the group, while also allowing external nodes
to send requests to the group and receive responses.

FavorX Protocol is a communication protocol running on a decentralized network, based on
routing tables and multicast protocols, which can meet the needs of different projects. It can
group data that needs to be broadcasted (such as public blockchains) into a group and
broadcast within the group; for situations where large amounts of data need to be transmitted
to the target node, the routing table can be used to find the fastest transmission path; and for
data that may be read repeatedly, local caching is used to reduce the possibility of repeated
reading.

The FavorX Protocol comprises the following components:
1) A decentralized routing table, implemented on top of a DHT network for virtual

connection.
2) Unicast and multicast on P2P, based on the decentralized routing table for message

orientation and limited range transmission.
3) The foundation layer, driven by a built-in special-purpose chain that can be accessed

by applications via multicasting:
a) Custom High-performance Low-cost Blockchain
b) Name Service Protocol
c) Authorization Access Protocol
d) Accouting and Incentive System

4) The application-layer protocols, including:
a) File Transfer Protocol
b) Live Streaming Protocol
c) Web Service Protocol

4

2. Relevant Works
This section has reviewed the existing important technological implementations used by
FavorX. It has focused on describing IPFS and SWARM, two globally distributed storage
systems.

DHT
Distributed Hash Table (DHT) is a widely used device and node addressing scheme in P2P
networks, which adopts the architecture of no centralized server to divide the whole network
into multiple subnets. Each node is responsible for part of the routing and storage, thus
implementing the addressing and storage of the whole DHT network.

Distributed Hash Table (DHT) is a decentralized distributed system composed of a keyspace
and a mask network, which has the characteristics of automatic decentralization, powerful
fault tolerance, and good scalability support. DHT does not specify a specific algorithm
implementation, so there are various implementation plans, such as Chord, Pastry, Kademlia,
etc. Kademlia and its variants have become the mainstream scheme for DHT implementation
due to their excellent performance and implementation schemes.

KAD

Kademlia is a typical structured P2P overlay network, which organizes nodes and data in the
same way and implements the distributed storage and query of data through the XOR
calculation of logical distance. It distributes all nodes into 160 buckets based on logical
distance, and can quickly find the nearest transmission or query node according to the data
key without caring about which node the value information is stored on.

S-BUCKET

In KAD network, 160 buckets are used to store all the node information of the network, and
the number of nodes in each bucket decreases exponentially. When only the adjacent nodes
are recorded, a large number of empty buckets will appear, thus increasing the difficulty of
routing and the probability of failure.

In order to solve this problem, SWARM proposed the concept of "saturation": setting a
threshold K, starting from the first bucket (saturation 0).

1. If the number of nodes in the bucket is greater than or equal to K, S is the serial
number of the bucket, until:

2. If the total number of nodes in the bucket is less than K, S remains unchanged, ending;
or

3. If the total number of nodes in all buckets greater than S is less than K, S is reduced
by 1 (if S is not 0), ending.

5

The S-BUCKET algorithm divides the number of connections of the node into saturated
region and unsaturated region, with the bucket numbered as S as the boundary, each bucket in
the saturated region is treated as a virtual bucket, and the unsaturated region is merged into a
virtual bucket; during the addressing process, according to the addressing target, the
corresponding virtual bucket is searched to find the corresponding neighbor node to forward
the data or query the relay. In FavorX, a maximum of 16 buckets are used.

2.1. SWARM
SWARM SWARM is a distributed storage project on Ethereum, whose design goal is to
provide a decentralized storage system, which adopts KAD addressing scheme and S-
BUCKET scheme to achieve low failure rate and high read speed.

2.1.1.Responsibility Zone

If the nearest node is the sole storage node and has gone offline, the content will be
irrecoverable, and this basic scenario can be addressed by implementing redundant storage.
SWARM designed the concept of "responsibility zone" which defines it in fully connected
areas. If the block falls within the responsibility zone of the node, the memory node will
assume the responsibility of storing it. As long as each node in the minimal field of R
endpoints can store all the blocks in the area, the content can be mathematically guaranteed to
be retrievable even if R-1 storage nodes are disconnected at the same time.

2.1.2. Streaming Synchronization

SWARM employs data dissemination and stream synchronization, which automatically
propagates data according to its key value to the nearest node and establishes an input stream
and an output stream between the node and all the nodes in the bucket. It also tags the data
with sequence numbers in the cache to avoid data being propagated multiple times. Then:

1. When the data in the cache is updated, the node updates its output stream with a new
sequence number (NC);

2. Nodes need to record the latest updated sequence number Ni of all input streams;
3. When a new sequence number NC is received from the input stream, search for all the

sequence numbers between [Ni,, NC], and request the transmission of the
corresponding data for these sequence numbers from the input stream;

4. When receiving the data corresponding to the sequence number, update the value of
Ni.

Streaming synchronization can quickly and non-repeatedly synchronize data between two
nodes, but in a decentralized system, there are security issues: any node may attack by
writing invalid junk data, resulting in wasting precious network bandwidth and storage space.

Another disadvantage of SWARM is that it can design arbitrary key values for the data value.
This scheme can store different values for the same key, which is an important foundation for

6

the PSS module of SWARM, but in a decentralized network, malicious nodes can arbitrarily
modify the value, resulting in the inability to effectively guarantee the authenticity of the data.

2.2. IPFS
IPFS is a content-addressed, distributed hypermedia transport protocol aimed at building a
fast, secure, and open global file system. It utilizes a DAG graph structure like GIT to
organize folders and create a decentralized file system, which has attracted widespread global
attention.

2.2.1. Coral DSHT

In SWARM, the data values are directly synchronized and stored to Distributed Hash Table
(DHT) nodes, which can lead to unnecessary node storage and transmission of data and thus
waste of storage space and network bandwidth. IPFS adopts a new approach of first
evaluating the connectivity of all nodes and then dividing them into several different priority
levels according to the Round-Trip Time.

Coral DSHT is a distributed M-Hash Table used to implement soft-state key-value retrieval,
allowing multiple values to be stored for the same key and mapping the given key to Coral
server address, which can be used to query domain servers closer to the user, servers with
specific website caching information, and locating nearby nodes to minimize request latency.

2.2.2. GIT

Git utilizes a directed acyclic graph to store file contents, with each file's history associated to
its directory structure and root node and ultimately to a commit node which may have one or
more parent nodes. This data structure has the characteristics of facilitating the browsing of
file history and contents:

i. When content nodes (files or directories) have the same identifier (in Git represented by a
SHA code) in the directed acyclic graph, even if they are in different commit nodes, it
guarantees that their contents are the same, thus making Git more efficient in difference
comparison.

Ii. When merging two branches, essentially what is being done is merging two directed
acyclic graph nodes. Directed acyclic graph allows for Git to efficiently determine their
common parent node.

Git provides a scheme of using directed acyclic graph to store folders in objects, which
minimizes the object storing changes when the content of the folder is changed.

2.2.3. BITSWAP

The BitSwap protocol in IPFS is inspired by Bit Torrent, distributing data by exchanging data
blocks between peer nodes. Like Bit Torrent, each peer node continuously uploads the data

7

already downloaded while downloading. Unlike the Bit Torrent protocol, however, BitSwap
is not limited to data blocks in a single torrent file. That is, downloading a large file or
directory (divided into multiple small blobs and lists for storage), one of which is part of
other files. The BitSwap protocol contains a permanent marketplace composed of all the
nodes. This marketplace contains all the blocks wanted by each node, including all the block
data that each node wants to retrieve. Regardless of what these blocks are (e.g. part of a
torrent file), the block data may come from files that are completely unrelated in the file
system.

Every node in IPFS maintains two lists: the list of blocks it already has (have_list) and the list
of blocks it wants (want_list). The BITSWAP credit mechanism is used to prevent water
holing attacks (empty-load nodes never share blocks). Node downloads and share files should
be balanced, and the bytes received and sent are recorded in the BITSWAP ledger. When A
and B are connected, A sends the part of the local ledger related to B first, that is, the record
of the blocks exchanged between A and B before. If the same, a link will be established; if
different, node B will send an empty ledger to node A. If a node's ledger is found to be
different often, the other nodes will remember it and not link to it in the future. Moreover,
after the link is established, if the blocks sent by B to A are found to not be the ones desired,
the connection will be broken and the ledger will not be updated.

2.2.4. CID Content Addressing

Content Identifier (CID) is also referred to as a tag in the IPFS network that points to the
actual data entity. It does not represent the actual location where the data is stored in the
network but rather a form of address representation based on the data itself. No matter how
large the data content is, the representation of CID is very short.

  CID is a content-based encrypted hash. It has two main features:

1) Any modification to the data will produce a different CID.

2) Appending the same content to two IPFS nodes in the same manner will generate the same
CID.

IPFS by default employs the sha-256 hashing algorithm, while also supporting a variety of
other algorithms. The Multihash project aims to provide other programs with hashing
algorithms, and allows for the coexistence of multiple hashing algorithms.

3.Design of FavorX System
The design of FavorX is aimed at solving the network isolation problem in Web3 systems by
restricting the transmission of messages to necessary nodes on a peer-to-peer network and
transmitting various protocols through this message, thus providing decentralized services for
multiple underlying modules for Web3 applications.

8

In mobile networks, node online/offline behavior is affected by device startup/shutdown and
application foreground/background state. When the device is on and the application is in the
foreground, the node will join the decentralized network; when the device is off or the
application enters the background, it will automatically disconnect the network connection of
the application, resulting in the node going offline. If a large number of mobile nodes are
used to provide routing functions in the system, it will result in a large number of invalid
routes, thus degrading the network performance and causing network jitter. The same mobile
devices are also limited by the battery, so even if they are online, the nodes do not want to
keep providing uplink bandwidth in order to avoid extra power consumption. In FavorX,
nodes are divided into full nodes and light nodes, where full nodes are equipped with the
functions of routing and data transmission, while light nodes only connect with full nodes and
read data from them.

All full nodes in the FavorX network are placed in an equal position without any privilege.
Every node offers data caching and command forwarding services to other nodes, and thus is
rewarded with corresponding rewards and FavorX network computing power, and thus gets
corresponding rewards based on its network computing power.

3.1. Protocol Architecture

An agreement architecture is adopted on the basis of existing DHT addressing, which enables
each full node to create and maintain its own routing table to achieve high performance and
reliability of message and data relay. Based on this routing table, unicast and multicast
messaging functions are implemented, allowing lightweight nodes to send requests to the
group and get a response only with the knowledge of the group information.

The introduction of multicasting capabilities enables the FavorX Protocol to create different
functional modules or connect to existing blockchain modules. For example, within the
FavorX Protocol, the light nodes can send requests or subscribe to messages from the 19-
node-formed FavorX Customized Chain to obtain chain information. Additionally,
applications can also create a listening group for existing blockchains to relay the blockchain
messages heard to subscribers. For example, a listening group of nine nodes can be used to
monitor information on Ethereum, while a light node can simply subscribe to the group to get
information from Ethereum or send commands to it through the group.

9

On FavorX's customized chain, a decentralized trading market is established, with all nodes
providing message transmission and data relay services to the system, for which requesters
need to pay. On FavorX network, these fees are always measured in the form of data traffic
fees. When the full nodes of FavorX transmit verifiable data traffic, they will gain network
power and receive corresponding rewards through the Incentive and Billing modules
according to the proportion of the node to the total network power.

FavorX's customized chain also has a name service system and authorization proof system,
where the name service system can realize the mapping of general URL to specific
information related to the service, such as the CID of the file when the file is transferred, and
the group name of the corresponding service for the decentralized service.

In addition to the above protocol components as the foundation of FavorX, FavorX has also
defined most of the basic technical modules required by Web3 applications, including file
transfer, real-time media streaming and Web service protocols on P2P networks.

FavorX adopts the strategy of dividing and segmenting files in units of 256KB for file
transmission, and each full node has data caching capability, so the same file fragment may
have multiple data sources. FavorX defines how to select the most suitable one from different
data sources for data transmission, which optimizes the strategy and enables FavorX to
achieve high-definition video real-time playback capability with high concurrency users and
greatly improves the efficiency of file transmission.

Unlike data transfer protocols in which data is read from the client side, real-time streaming
media protocols have the source node actively pushing data to all subscribers. Due to the
limited bandwidth of the source node, it is necessary to assist in forwarding the data by using
a relay node, that is, the data is first sent from the source node to multiple relay nodes, and
then these relay nodes deliver it to the subscribers. FavorX's real-time media streaming
protocol supports dynamic adjustment of the relay nodes according to the number of
subscribers to optimize network bandwidth, providing subscribers with a continuous and
uninterrupted playback experience.

The basic design concept of Web services in existing Web systems is to build a platform-
independent, low-coupled, self-contained, programmable Web application, usually adopting
the Server/Client architecture, in which the Client accesses the interface provided by the
Server via the HTTP protocol. In order to be as compatible as possible with existing Web
development, FavorX provides a function of proxying HTTP services through P2P networks.

FavorX's basic P2P network is implemented based on LibP2P, thus fully taking advantage of
its modular features, while addressing and data flow formats conform to the conventions of
Lib2P2P: different transport layer protocols are identified by different ProtocolIds, while data
is encoded by ProtocolBuf.

10

3.2. Nodes and Groups

3.2.1.Nodes and Identities

In FavorX, each node is endowed with an address and an identity that is created through the
use of S/Kademlia's static cryptographic puzzles involving public-key cryptography hashes,
wherein the node stores its public and private keys (encrypted by cryptography) and its
overlay address is generated by hashing the public key with sha256. Additionally, each node
possesses a type identifier to indicate whether it is a full node or a light node in the system.
When nodes establish a connection, they need to exchange public keys, and check if
sha256(peer.publicKey) is consistent with peer.NodeId; if not, the connection will be
immediately terminated.

The connection strategy and type of the node are related, light nodes always only connect to
full nodes and not to other light nodes, and full nodes will also take different strategies to
manage other nodes that connect to it according to the node type.

Connection Strategies:

Connected
or Not

Full node Light node

Full node Y Y

Light node Y N

When all nodes receive a connection request, different handling approaches will be taken
according to the type of the incoming node: if it is a full node, it will be managed by S-
Bucket; if it is a light node, it will be managed according to the maximum number of allowed
connected light nodes.

3.2.2.Grouping

Any nodes in FavorX can create groups, which consist of a set of logically-related nodes
connected through virtual links. In most cases, data will be synchronized within the group,
and if the way of adding nodes within the group has the characteristics of decentralization,
then the group is decentralized.

11

One of the basic components of FavorX is grouping, which can:

1) Encapsulate a single point of service as a group, enabling clients to access the single
point of service in a decentralized manner for the network.

2) Decentralize existing services by deploying the same service - e.g., database service,
application service - on multiple nodes and implementing data synchronization across
multiple nodes using intra-group broadcast functionality.

3) It is also possible to connect a decentralized technology module such as a public chain
or decentralized storage to a set of nodes, providing customers with another
connection option in addition to RPC connections.

The communication scheme within the group is defined as multicast and groupcast. Multicast
is to send a message that needs to be broadcast within the group to multiple nodes in the
group; while groupcast is to send a command to the group to obtain a response, which only
needs to be processed and responded by a node in the group, without broadcasting in the
group. Evidently, the primary application scenario of multicast is data synchronization among
nodes within a group, while that of broadcast is interaction between clients and services
within a group.

Due to the non-trusting nature of nodes, when a client requests data from a server, it needs to
check the validity of the acquired data. If the validity of the data is to be determined jointly
by the server and the client, it is not specified in FavorX.

3.3. Transport Layer Protocol
As mentioned above, in addition to having the ability to broadcast messages to the network,
FavorX also defines multicast and unicast: Multicast is to broadcast messages within the
same multicast group, since the nodes belonging to the same multicast group may not
necessarily be adjacent nodes, the broadcast messages in the multicast group may need to be
relayed through other nodes. The Unicast feature is the ability to send messages from one
node to a specific node, which may also require relaying through other nodes. Aside from the
two aforementioned transmission protocols, there is also a Multicast protocol: namely,
sending commands to or getting data from a group, in fact, this Multicast protocol is realized
through Unicast protocol, that is to say, the requester firstly needs to find a node in the group,

12

then send the request to the node and get the response. Unicast capability relies on the
implementation of RouteTable. Therefore, the underlying framework of the transport layer
protocol is illustrated in the following diagram:

3.3.1. Protocol Formats

In FavorX, the protocol format is always "ProtocolId/protocol data", and the following ProtocolIds are
currently defined in FavorX:

● Routing Protocol
● Unicast Protocol
● Multicast Protocol

Where, protocol is a five-tuple (D,T,L,P,S)

Thereinto:
1) D→ Dest NodeID, the destination address to send to
2) T → TTL, each hop is decremented by 1, and no more forwarding when it reaches 0,

preventing infinite loopback of data
3) P → Payload, application layer data protocol
4) S → Signature, the signature of the requester

All data content is encoded with ProtocolBuf, and since the transport layer does not define a
generic protocol format for the payload, the protocol handler encodes and decodes the content
in the payload.

3.3.2. Routing Protocol

Brief Description

A routing protocol is a technique for discovering the next hop address to a particular
destination on a network, with the key being the ability to record the latest connection
information that can reach the destination address. When data is successfully transmitted
through the nodes of a routing table entry, the routing table entry should be refreshed; and
when a routing table entry has not been used for a period of time, the entry will become
invalid. Therefore, through the routing table, the application end can establish a virtual
connection. When a node needs to establish a connection with another node, it can send
heartbeat data regularly within the timeout period of the routing table item to maintain the
validity of the item.

13

The routing protocol is divided into routing discovery and response. The following diagram is
a schematic diagram of the routing discovery process.

The figure shows an operation process based on a route discovery protocol, where node S
sends out a Route Request Rreq and searches for the closest two nodes R1 and R2 among its
neighbor nodes, then sends the Rreq to the two nodes, and so on until the last step which
pushes the Rreq to the destination node T.

When the destination node receives the Route Request Rreq, if it finds the destination node is
itself, it will generate a Route Response Rresp and push it back to the node that sends out Rreq.
In the above figure, R7 and R8 are the nodes that issue Rreq, and thus will receive Rresp. The
same procedure is repeated until the final step of pushing Rresp back to the initial node S.

During the process of pushing Rreq and Rresp， all the intermediate nodes will update their
routing tables according to Rreq and Rresp to reduce redundant route entries. When there are
multiple routes to the destination address, the intermediate nodes will select one or more
optimal routes and delete other redundant route entries. Generally speaking, the valid route
with the least number of hops is usually retained. Taking R1 to T as an example, there are
two routes for the routing, 1) R1→R4→R7→T, 2)R1→R3→T. If we keep only one route,
then route 1) will be deleted while route 2) will be preserved.

3.3.2.1.Routing Discovery

Definition

Routing discovery Rreq is a quintuple created by a node S with (uuidt,s,d,α,p,s), where:
5) uuid → creation time and the creator's signature for that time, this can be used as a

unique identifier for route discovery and response
6) d → The overlay address of the target
7) α→ The fan-out value, i.e., in search of several neighboring nodes to forward this

request
8) p→ The path information during the process from the start node to this node, each

path is signed by the corresponding node, used to verify whether the path is valid, this
information can be used to update the local route

14

9) s → The signature of the node in the path to verify that the frame has not been forged
or tampered with, in this case the value is signed by the initiator and the path is empty.

Initiate

When a node needs to find the route to a specific node, it generates the frame and requests for
relay from its neighboring node, and the frame will be modified continuously in the process
of relay.

Receiver Processing

When the node receives the route discovery request, it first checks the validity of the request,
whether it has been repeated, and then checks whether the target node is itself. If it is itself, it
will generate the route response Rresp and return it to the other party. Otherwise, modify the
request as necessary and search for a suitable node from the neighboring nodes to forward
this modified routing request.

Cost Calculation

The requester needs to pay the forwarding node a fee proportional to Rreq.α and the distance
between this node and the target node, where Rreq.α is a variable factor. As Rreq.α increases or
the distance between this node and the target node increases, the fee to be paid will also
increase.

15

3.3.2.2.Route Response

Definition

Route Response frame Rresp is an four-tuple (uuidt,s,o,p,s)created by the destination node D
when receiving a route discovery request, where:

10) uuidt,s →the uuid of this Rresp corresponding to the Rreq, the identifier of route
discovery response

11) o→ This Rresp corresponds to the overlay address of the Rreq initiator
12) p→ The path information during the process from the response node to this node,

each path is signed by the corresponding node, used to verify whether the path is valid,
this information can be used to update the local route

13) s → The signature of the node in the path to verify that the frame has not been forged
or tampered with

Initiate

When a node receives a route request with its own node as the destination node, it generates
the frame and returns it to the requester.

Receiver Processing

Cost Calculation
None, processing route response frames does not incur any costs, however if the route

is successful, the node may benefit from relaying data by collecting data flow fees, which is
the potential gain of processing route response frames.

16

3.3.2.3.Fault-tolerant Handling

Routing Failure

In S-Bucket based routing discovery process, if the fan-out number 1 of each node is N, and
the number of nodes in the whole network is M, the average hops of the whole network is

; Considering the success rate of TCP transmission and the success rate of route
response, the probability of routing discovery and successfully getting response is . In order
to improve the success rate, a way of forwarding each request to multiple next-hop nodes with the
number of α can be adopted, and the success rate of each hop TCP transmission is:

.

Thus, the probability of discovering the route and successfully obtaining a response will increase, i.e.

.

In a typical network with 10 million nodes, N=20 and H=6, considering the bandwidth occupancy of
application systems may lead to point-to-point communication timeout or failure, p=0.999, when α=1,
the transmission success rate is

and this failure rate is relatively high, which will have an adverse effect on applications.When α = 2,
the transmission success rate is

which can meet the requirements of the actual application.

Amplification and Routing Spoofing

FavorX is designed for a trustless network where routing requests originating from source
nodes are forwarded by multiple nodes in the form of , making malicious nodes capable of
attacking the network by using large α and ttl values. To prevent such attacks, FavorX requires
the nodes issuing the routing requests to pay the corresponding fees to the other nodes. This fee is
paid by the initiator of the route to the forwarding neighbors and, in turn, by the forwarding neighbors
to the forwarding nodes when they forward again.

When a neighboring node receives a routing discovery request and fee, in order to obtain genuine
routing information, he will need to pay a corresponding fee to his forwarding neighbor node, which
will lead to the neighboring node having a motivation to not forward the request normally, but to
generate a false routing response to the requester, so the routing response needs to be verifiable.
FavorX adopts signature verification to realize path authentication, that is, each hop node will sign its

1 refers to the subordinate full nodes connected by a node; in P2P networks, this value is 1/2 of the node's

average full node connections

17

path. This signature scheme prevents nodes from forging routing responses while increasing routing
complexity.

3.3.3. Transport Protocols

3.3.3.1. Unicast Protocol

Unicast protocol is a point-to-point communication protocol based on routing, which establishes a
virtual connection between two points, and uses routing protocol to find the optimal route between the
source node and the destination node, thus realizing efficient and reliable data transmission. In the
process of system implementation, communication status of the virtual connection can be recorded.
When the virtual connection is in idle state for a long time, heartbeat frames can be sent to maintain
the routing table entries in each node on the path, thus effectively ensuring the success of subsequent
data transmission.

In certain scenarios, nodes can send unicast messages without routing, i.e. after node A sends a
request to node B, node B can directly respond without route discovery, because the routing table
entries from A to B are already up-to-date during the request process.
All application layer command and message protocols, including multicast and broadcast protocols,
are based on the unicast protocol, which contains the payload of the unicast protocol. The data
frame format of the unicast protocol is shown in the figure below:

Definition

Unicast discovery is a datagram with ProtocolId "/favx/1x", where x is an optional range of
"0-9" and "A-F". The payload can be any generic data format and the following:

1) 10 is the heartbeat frame, and the rest is defined by the application
2) The data fee of unicast is always paid by the source node

Initiate

When a node needs to send a multicast data Payload to another node, a unicast data frame is
created and sent to the corresponding neighbor node.

18

Receiver Processing

When the node receives the unicast data frame, it checks the validity of the frame and then
gets the next hop neighbor node from the routing table according to the destination node
address, and then sends it to the neighbor node.
In order to prevent data loopback, for each data frame, the hash will be recorded in a
known_frames, if a data frame has been recorded, the node will receive it and directly discard
the frame. When implementing the system, the total capacity of know_frames can be
restricted, and only the data frames of a certain period of time will be recorded, instead of
being permanently recorded, thus avoiding the capacity of know_frames expanding infinitely.
For the data sent to itself, it should be checked if it is a heartbeat. If it is a heartbeat, which is
only used by the other side to maintain the connection, it can be simply discarded; otherwise,
the data should be handed over to the upper layer for processing.

19

Cost Calculation

Different protocols at the application layer have different payment methods, for example:
when reading files, payment is made according to the number of bytes; when instant
messaging messages, payment is made according to the number of frames or bytes; in unicast
protocols, if it is only a relay node, the data is charged per frame; if it is sent to itself, only the
heartbeat data frame is charged; the other multicast or broadcast protocols correspond to the
protocol layer for fee settlement.

3.3.3.2. Multicast Protocol

Multicast protocol is a broadcasting mechanism among nodes in a group. Since the nodes in
the group may not be directly connected, the data is relayed through non-group nodes. From
the perspective of the nodes in the group, it always transmits the messages to be broadcasted
through virtual connections. When the nodes in the group receive the multicast messages sent
to themselves, they are assigned to the corresponding group processor according to the target
group ID, which is managed by each group processor.
The data frames of multicast protocols are within the payload of unicast protocols:

Definition

Multicast protocols are a triplet (GT,GID,P), wherein:
14)GT → GroupType, the type of the group, which each type having a dedicated processing

module
15) GID → GoupID, the ID of the group, according to which the processing module processes

differently
16) P → Payload, the data protocols within each group

20

Initiate

Multicast messages could be initiated by nodes within the group--when data needs to be
synchronized with other nodes in the group, or by nodes outside the group--when a functional
module needs to transmit data to another decentralized functional module. Therefore, when a
node needs to broadcast data to a group, create the data frame and send it to any node in the
group.

Receiver Processing

When a node in the group receives a multicast frame, it first verifies the validity of the data
and then, according to the GroupType in the frame, finds the corresponding processor
registered in the system. If exists, the processor is invoked to process the data. After the
processor completes the processing, it needs to return a status value to the system indicating
whether the frame is valid and whether it needs to be forwarded. If the status value is true, the
multicast component will forward the multicast frame to other nodes in the same group.

Cost Calculation

FavorX does not impose restrictions on the protocol layer of multicast applications for
accounting purposes. In most cases, multicasting is used for underlying data synchronization,
so there is no mutual accounting.

3.3.3.3. Multicast Protocol

Multicast protocols refer to applications (clients or group-external nodes) sending requests to
a specific group to perform certain operations or obtain certain data. For example, in FavorX,
a group can be created to wrap an Ethereum service, and clients send Ethereum transactions

21

to this group, which then submit the transactions to Ethereum, thus realizing the proxy
Ethereum function. Additionally, data services can be provided to clients by a group, and the
clients can send Create/Retrieve/Update/Delete (CRUD) commands to the group to achieve
decentralized access to the database.
In a typical implementation of FavorX, the client first seeks to establish a virtual connection
with the nodes in the group, and then sends a multicast request to the node. When nodes in
the group receive requests, the requests will be forwarded to the actual server according to the
actual service it proxies, or data will be read from the server and returned to the client. When
nodes in the group receive requests, the requests will be forwarded to the actual server
according to the actual service it proxies, or data will be read from the server and returned to
the client.
Like multicast protocols, the multicast protocol is also implemented on the basis of unicast
protocol, and its unicast command code is 0x20.

Definition

Multicast protocols are Group (GT,GID,P), wherein:
17)GT → GroupType, the type of the group, which each type having a dedicated processing

module
18) GID → GoupID, the ID of the group, according to which the processing module processes

differently
19) P → Payload, the data protocols within each group

Initiate

Multicast messages originate from nodes outside the group and are delivered to a node within
the group.

22

Receiver Processing

When a node in the group receives a multicast data frame, it should first validate its validity.
Then, based on the registered GroupType, the handler corresponding to it will be retrieved
from the system and invoked to process the data frame. If the handler returns data that needs
to be responded to, the system should create a multicast frame with the data and return it to
the source node.

Cost Calculation

The multicast protocol in FavorX is used for clients to send commands or read data to the
servers that provide services in the form of a group, thus the application layer is responsible
for computing the related fees. For example, when the clients send requests to the database
service, the server will charge the initiator (i.e. the client) instead of charging the relaying
nodes in the upper level. Additionally, the database service can also adopt multiple different
payment modes, such as the pay-per-times mode, the package monthly payment mode, etc.
FavorX entrusts the application layer to implement these payment modes.

3.3.3.4. Fault-tolerant Handling

Multicast Failure Detection

The initiator of the multicast message must be aware of the possibility of "packet loss" and
"non-forwarding" of data, where "packet loss" refers to the data not arriving correctly at a
node in the group during the transmission process, and "non-forwarding" refers to the node in
the group receiving this data packet without forwarding it. Given the decentralized nature of
the group, the initiator of the multicast needs to detect the reliability of the message and the
retransmission scheme based on its own business logic. for example, in FavorX's accounting
processing scheme, a customized chain is adopted as the service group, and the service nodes
with bandwidth periodically submit the receipt sets that need to be billed to this group, but

23

there may be cases of packet loss or non-forwarding. FavorX monitors the information on the
accounting chain to determine whether the receipt set has been processed, and if it has not
been processed, the data of this time will be merged together and resent in the next sending to
achieve effective accounting of the data traffic. For details of the specific scheme, please
refer to Chapter "Data Traffic Accounting".

Amplification Attack

When the creator of a multicast message creates the data, it is broadcasted within a group,
which may lead to the risk of an amplification attack, i.e., malicious nodes can exploit limited
resources to make the system consume a large amount of resources by creating a multicast
message and letting nodes within the group propagate the message. FavorX adopts two
mechanisms to avoid amplification attacks:

1) Consumption payment: When it is required to transmit a multicast message, the node
needs to pay a fee to the relay node, which increases the attack cost.

2) Application Verification: Nodes within the group adopt message validity verification to
process group-type messages to ensure the correctness of the message, and broadcast the
message again if the content is valid.

Service Fraud

Upon a multicast request being issued by a user, the request is relayed to a node within the
group, and a response is obtained from this node. Given that FavorX employs a trustless
mechanism, malicious nodes can potentially forge response data in order to deceive the
requester. Given the variety of application service forms, FavorX cannot implement a
consistent anti-fraud function at the application layer. A typical anti-fraud scheme is to use a
KZG promise, in which the services in the group are provided to the users in the form of a
KZG promise, and when the user requests certain data, the service node needs to return the
data and the corresponding proof to the user simultaneously. The user uses the pre-set KZG
promise to verify the correctness of the response data. For a detailed description of KZG
promise, please refer here 2.

3.4. Application Protocol

3.4.1.File Distribution Protocol

File Origination

Inspired by the IPFS and SWARM/BZZ projects, FavorX implements file and folder
distribution in a decentralized network. In FavorX, a file is a piece of data and the result of a
split hash tree represented in pyramid form. Specifically, the file content is divided into

2 KZG polynomial commitments – https://dankradfeist.de/ethereum/2020/06/16/kate-polynomial-commitments.html

24

chunks of 256KB, and all these chunks are hashed and arranged, and then sliced again when
reaching 256KB, and so on until only one hash is left, each of which is referred to as a
Content IDentifier (CID), and the top-level hash is referred to as the Root CID.

In the FavorX system, the file originals are stored in what are called storage nodes in the form
of an entirety. FavorX supports multiple ways to match files with storage nodes, such as IPFS
nodes for file storage, and a decentralized storage marketplace within FavorX to enable file
requesters and servers to automatically match in the market.

In this system, the part of the file original image other than the actual content is referred to as
a file hash tree, which can be read separately to obtain the hash information of all segments of
the file.

File System

Starting from IPFS, not only can single files be stored on decentralized networks, but folders
can also be stored and distributed, thus making the whole network look like a huge file
system. FavorX has borrowed these concepts and also achieved folder management, in which
folder management is realized through manifest files in FavorX.

Manifest can be used to represent the mapping of file paths and has the ability to map URLs
to the directory tree of the file system. By providing detailed routing conventions, URLs can
be mapped to files in a standardized way, thus allowing for a simulated site-map/routing table,
and FavorX can also be used as a virtual cloud hosting server.

A manifest is a structure that defines the mapping relationship between any paths and files,
used to handle a set of related files. In addition, it also contains metadata associated with the
set and its objects (files). Most importantly, the manifest entries specify the MIME type of
the files so that the browser can properly handle them. The manifest can be seen as a (1)
routing table, (2) index, or (3) directory tree, which enables FavorX to implement a website,
database, or filesystem directory. The manifest also provides the main mechanism for URL-
based addressing in FavorX. The domain part of the URL is mapped to the manifest,
and the path part of the URL is matched in the manifest to find the file entry to be
served.

Currently, the manifest is presented in the form of a compressed Trie
(http://en.wikipedia.org/wiki/Trie), where each Trie node is serialized in JSON. The JSON
structure has the minimum manifest entry array, which contains the path and reference (hash

25

root address). The path portion is used to match the URL path, and if the path is a common
prefix among multiple paths in the set, then references can point to the embedded manifest.
When a file is retrieved via URL, FavorX resolves the domain into a reference to the root
manifest which is traversed recursively to find the matching path.

The higher level APIs of the manifest provide the functionality to upload and download a
single document as a file, a collection (manifest) as a directory, and an interface to add
documents to and delete from a collection on the path. It should be noted that the deletion
here only implies the creation of a new list with the document related paths deleted.

In FavorX data transmission, the CID index is defined in the form of {CID: ParentCID} in
the form of fragments, which is used to indicate and quickly locate the location of a CID in
the list path, thus allowing the root CID to be traced up one level.

Storage Information

In FavorX, file information refers to the information stored on which nodes a file or chunk
corresponding to a CID is stored, including "original image storage information" and "chunk
storage information". The former is statically retained and needs to be stored in a specific
way; while the latter is passively recorded and maintained during the data transmission
process. When the client reads the file or folder content, it needs to rely on the file
information to find the corresponding node and extract the data.

There are multiple ways to store the "original image storage information", including storing it
on a centralized server (such as the BitTorrent seed server scheme), pushing it to a node
through distributed hash table (DHT) technology (IPFS adopts this scheme), or storing it on
the blockchain (the scheme used by FileCoin).

26

FavorX network has designed a "Chunk Storage Information" service group, which acts as a
prophet for the client. The client can send the target file to the service group in a specific
format, and the service group will return the "Chunk Storage Information" to the client. The
client can use this Chunk Storage Information to read data.

Chunk Storage Information is maintained by each node. When node B reads a Chunk
corresponding to a hash H from node A, a record H→NodeB will be added in node A.
Consequently, node A will record the node information of all Chunks with hash value H read
in a certain period of time, forming a record information H→[NodeId, NodeId, …], and this
information is called "Chunk Storage Information".

Chunk storage information is cached in nodes to discover multiple data in the system. The
application side looks for certain Chunk storage information to node A, and gets possible
Chunk cached nodes B, C,, and so on. Then, further queries are made to nodes B and C,
and through iteration, a table of all the Chunk cache nodes information of a certain original
image file is formed. When reading each Chunk in the follow-up, the node information table
is used to select the node for data transmission according to the ant colony algorithm.

Optimization Strategies

According to the previous section, with the increase of the number of clients reading the same
file, the number of chunks of the file cached by the relay nodes will also increase
correspondingly, providing more sources of data for subsequent nodes to choose from. In the
case of multiple data sources, optimizing the client's selection strategy will lead to better
reading and playback effects. FavorX optimizes the selection of read data sources through
Ant Colony Optimization (ACO) algorithm.

In the 1990s, Italian scholars Dorigo, Maniezzo, and others first proposed the Ant System
(AS) or Ant Colony System (ACS). They found that the ant colony could exhibit some
intelligent behaviors when observing the process of ants searching for food, that is, finding
the optimal path to the food source in different environments. Further research found that this
is because the ants release a substance called "pheromone", and other ants can also sense the
"pheromone", so they will choose the path with high "pheromone" concentration to go
forward; and then the other ants going to that path will also release "pheromone", forming a
positive feedback mechanism. In the end, the whole ant colony will be able to find the
optimum path to the food source.

In FavorX, the food source is nodes with data slices, where the file information records which
nodes have data slices. In the reading process, data is read preferentially from nodes with
good connection quality to maximize the utilization of network bandwidth between nodes. To
this end, we introduce an initial heuristic value e, which depends on the previous value or a
random number between [x, x + r); at the same time, an N value is considered to measure the
current node's busy degree. Rank all available nodes according to the processing of e and N,
and select the node ranked at the front to read data. After the reading is completed, update e
in the reverse direction according to the information pheromone concentration composed of
data reading size/delay to form a positive feedback loop.

27

The ant colony algorithm is realized by a set of interrelated processes:

1. Node selection;

2. Recording information at the beginning of reading;

3. Updating information at the end of reading;

4. Information pheromone evaporation on a regular basis;

Through the above set of algorithms, nodes can track the data transmission state between
themselves and other data sources in real time, and select the best transmission mode from all
available nodes. In this scheme, the transmission speed between two nodes is the only
criterion for judgment, regardless of physical location and network topology.

28

File Oracle

FavorX has realized the unified access and data distribution to different storage backends
through its file oracle technology, currently offering built-in support for decentralized storage
systems, IPFS storage systems, and centralized cloud storage systems, and capable of
extending support to other storage backends through the development of corresponding
plugins.

The file oracle provides a decentralized query service for the original image storage
information in the form of multicast to the client, and the client sends the query request in the
standard format to the oracle, which is in the form of a simplified URL:

<scheme>://<user>:<password>@<host>:<port>/<path>

scheme: The protocols, where common ones are HTTP/HTTPS for centralized cloud storage
backends, IPFS for IPFS storage backends, and FXFS for the built-in storage backends of
FavorX.

The username (user) is an optional item and is available for HTTP/HTTPS protocols, while
IPFS protocols don't need it and in FXFS it will be the user's account address.

password: The password, optional, which is currently applied to http/https only.

host: The host, in HTTP/HTTPS refers to the hostname; in IPFS it is not necessary, if exists it
is the universal gateway domain name for IPFS; for FXFS, if exists it indicates the use of a
name resolution system, if not exists it does not use.

port: Port is an optional item that in HTTP/HTTPS refers to the port of the host; in IPFS, it
refers to the port of the gateway; while in FXFS, it does not need to be used.

path: The path information of the file, in fact, is defined by the corresponding storage
backend.

The data format returned by oracle is always consistent and does not differ depending on the
different storage backends. Therefore, the client can parse it in a unified way and proceed
with subsequent operations. The data format returned by the oracle is as follows:

`<RootCID>:[<NodeID>]`

The oracle responds to the RootCID and NodeID information of the original image file,
generally speaking, the original image file has multiple storage nodes. The NodeID in the
response must be the FavorX node, and the client can access these nodes through routing.

Distribution Process

During the reading process, the client will continuously exchange specific CID-
corresponding Chunk storage information with the nodes in order to obtain the node
information that has cached the Chunk and request data from the corresponding nodes

29

through the relay nodes. When client A reads the data corresponding to a specific CID from
the storage node C through the relay node B, B will cache the data locally, and C will also
add B as a new cached node of Chunk storage information to its local machine. When other
client D requests the corresponding Chunk storage information from C, C will also send B as
an available data source to D, and D will select to read data from C or B according to the
connection situation.

After obtaining the "Original Image Storage Information" from the file oracle, the client reads
the file "Original Image Information

Distribution Protocol" from the storage node. It is a process of obtaining actual data from the
FavorX network according to the obtained file CID. In FavorX, file distribution is divided
into three stages:

1) Obtaining the original image storage information corresponding to CIDs from the
oracle group

2) Obtaining the file storage node from the original image storage information, and
obtaining the Chunk storage information from the file storage node

3) Obtaining the cache node of the Chunk data from the Chunk storage information, and
obtaining the data content and the remaining Chunk storage information from the
cache node

Protocol Descriptions

FavorX's file distribution protocol consists of four operation primitives, namely
QueryFileInfo, QueryHashTree, QueryChunkInfo, and GetChunkData. QueryFileInfo is used
to query the original image storage information to the oracle group, QueryHashTree is used
to request the corresponding hash tree of a file from the node, QueryChunkInfo is used to
read the Chunk storage information from a node, and GetChunkData is used to read the
Chunk fragments. These four primitives all contain two parts of request and response, and
have different data formats.

QueryFileInfo

➔ Request:

30

Data Format:

<scheme>://<user>:<password>@<host>:<port>/<path>, described in detail in the section
"File Oracle".

Sending Mode:

Multicast, from the client to the oracle group

Receiver Processing Process

When a node or relay node in the file oracle group receives a request, it first parses out the
protocol information and target file information, then finds the registered processor according
to the protocol information, if it finds the processor, it obtains the original image storage
information, if not, it sets the result to a NOT_FOUND error, after the processing is
completed, the result is sent back to the requester via unicast.

➔ Response:

Data Format:

{RootCID:[nodeId,NodeId,....,NodeId],proof}, described in detail in the
section “Storage Information”

Sending Mode:

Unicast, back to the requester from the nodes of the oracle

Receiver Processing Algorithm:

31

Upon receiving the response, the receiver verifies the correctness of the returned
value via the known commitment value. If correct, it enters the next step--selecting
some of these nodes to request reading the HashTree and subsequent work.

QueryHashTree

➔ Request:

Data Format:

RootCID, files parsed from RootCID

Sending Mode:

Unicast, from client to file storage nodes

Receiver Processing Process

After the receiver (file storage nodes) or relay nodes receive the request, they will check if
there is information corresponding to the RootCID in the local cache. If so, a response is
generated and returned.

➔ Response:

Data Format:

CID:[SUB_CID], this is an object, with each object's value being an array of sub-
hashes until a particular SUB_CID corresponds to data.

Sending Mode:

Unicast, sent back to the requester by either the file storage node or the relay node

Receiver Processing Algorithm:

Upon receipt of the response, the receiver checks the integrity of the hash tree, and if it is
correct, proceeds to request "Chunk Storage Information" from the source node as needed.

32

QueryChunkInfo

➔ Request:

Data Format:

[start_pos, bitmap_array], this is the bitmap of the file hash tree, and the part of the
"Chunk storage information" should be given by the other side, with '1' if this position
is available, otherwise '0'. For example, if there is a 2560K byte file that has been divided
into 10 Chunks, and node A queries the information of the third, fourth, and fifth Chunks to
node B, then the content of QCIReq is: [3, 0x07]:

It is obvious that the length of the Bitmap is related to the total number of Chunks to be
queried at one time, and the total number of Chunks queried at one time is related to the
cache prepared for streaming media playback, and this part of the implementation details is
determined by the application.

Sending Mode:

Unicast, from client to oracle group

Receiver Processing Process

When a node in the file oracle group receives the request, it first parses out the protocol
information and the target file information, then looks up the registered handlers according to
the protocol information, if the handler is found, use this handler to obtain the original image
storage information, if not, set the result as NOT_FOUND error, after processing is
completed, send the result to the requester via unicast.

➔ Response:

33

Data Format:

{RootCID:[nodeId,NodeId,....,NodeId],proof}, described in detail in the
section “Storage Information”

Sending Mode:

Unicast, back to the requester from the nodes of the oracle

Receiver Processing Algorithm:

Upon receiving the response, the receiver selects appropriate nodes according to the Ant
Colony Algorithm, and then invokes the GetChunkData primitive to read the data.

GetChunkData

➔ Request:

Data Format:

CID, hash of the data chunk that needs to be read.

Sending Mode:

Multicast, from client to the cache nodes of the chunk

Receiver Processing Process

34

When the target cache nodes or relay nodes of the chunk receive the request, they first check
if they have the data locally. If they do, they process it locally, otherwise they record the
incomplete request and then forward it to the next hop in their routing table. The steps of
local processing involve two: 1. creating a response frame to respond to the previous hop
address (prev_hop_node); 2. recording the transmission to prev_hop_node in the Chunk
storage information.

Note that forwarding to the next hop is always performed here in order to avoid the problem
of data redundancy when responding. For example: Node A and Node B consecutively
requested data from Node C and Node D to Node E, and with the solution of FavorX, Node C
received the two requests from Node A and Node B but only sent one to Node D; similarly,
Node D only requested from Node E once and returned the data to Node C, then Node C
cached it and sent it to Node A and B separately. This scheme avoided the redundancy of
Node D receiving requests from Node C and returning data.

➔ Response:

Data Format:

{cid, chunk_data}, where cid = hash(chunk_data) is the information of CID and the actual
data content

Sending Mode:

Unicast, sent from the previous hop.

Receiver Processing Algorithm:

After the receiver receives the data response, it first updates the local cache, then
checks which previous hop neighbor nodes are waiting for the response, and
responds to the Chunk data to them one by one.

Accounting Description

Only GetChunkDataResp is chargeable, according to the actual number of bytes.

35

3.4.2. Web Service Proxy Protocol

FavorX provides a new decentralized network architecture that allows developers to achieve
decentralization of applications without the need for a server, using P2P technology. FavorX
encapsulates using the RESTful protocol to establish virtual connections between two nodes
and provides HTTP and WebSocket proxy services for customer codes on these nodes.
Moreover, FavorX also allows developers to develop interface protocols fully compliant with
the VPN standard to directly leverage FavorX's decentralized features for Web2 applications.
At present, HTTP(S) and WebSocket proxies are supported in the FavorX system.

Provides proxy services for applications
FavorX provides two types of proxy services, stateful and stateless, where the former can
implement push, which means sending data from the server side to the application side and
vice versa with the same effect as WebSocket, and the latter provides requests/responses for
applications with the same effect as HTTP.

Http Proxy

This feature enables applications to acquire Http services in a decentralized way and, due to
the stateless characteristic of Http services, nodes in the proxy group of FavorX do not need
to maintain the information and status of clients, thus improving the utilization efficiency of
the nodes.

➔ Request:

Data Format:

36

Data format: Same as the Http multipart 3 uploading format

Sending Mode:

Multicast, from the client to the proxy node group

Receiver Processing Process

When the nodes within the proxy group receive the request, the data to be proxied is parsed
from the frame and then submitted to the actual server in the form of Http multipart, and then
wait for the response. When the data response from the server arrives, it is pushed to the
requester by unicast.

➔ Response:

Data Format:

Encoded HTTP Response format, with status code encoded.

Sending Mode:

Unicast, ient back to the requester from a node within the proxy group

Receiver Processing Algorithm:

Upon receiving the response, the receiver (optional) verifies the integrity of the return
value through the known commitment value, and if correct, parses the response data
for application processing.

3 https://www.w3.org/Protocols/rfc1341/7_2_Multipart.html

37

WebSocket Proxy

This feature enables applications to gain WebSocket services in a decentralized manner.
WebSocket is a stateful service, thus clients can establish connections with proxy nodes, and
the proxy nodes will create a WebSocket connection with the server according to the requests
of the client nodes. In the subsequent process, the client can directly send data to the Server,
and the Server can also actively send data to the Client.

➔ Create/Disconnect a Connection:

Data Format:

Data Format: the subprotocol coding, “create/destroy”

Sending Mode:

Multicast, from the client to the proxy node group

Receiver Processing Process

Creation: When a node in the proxy group receives a request, a connection is created with the
Server, and the src_node of the request and the connection relationship is recorded in the
connection information table.

Destruction: When a node in the proxy group receives a request, the connection with the
Server is disconnected, and the information about the connection is removed from the
connection information table.

➔ Data Transmission

Data Format:

Any data format.

Sending Mode:

38

When sending from the client to the server, it is a multicast mode.

When sending from the server to the client, it is a unicast mode.

Receiver Processing Algorithm:

The client is treated in the same way as the original websocket.

Accounting Scheme

The server can adopt a pay-per-use or record the purchase situation on the server side to
decide the response content according to whether the client is authorized. Therefore, a server-
side charge scheme that is consistent with existing application modes can be adopted. The
implementation process of accounting varies according to different accounting schemes. If it
is pay-per-use, then the same can be realized by offline small payments and on-chain charges.
If prepaid or other schemes are used, smart contracts can be used for payments and chain-
based authorization information. This part of the scheme is implemented by the server.

Attack and Defense

Due to the decentralized nature, any node in the network can tamper with the data in the
middle transmission, so the data needs to be signed to confirm the validity of the data. In
these proxy services, the HTTPS encryption model is used, which enables the service and
client to sign the data when initiating, to ensure the security of the service data. The WSS
scheme can also be used to establish an encrypted and reliable channel between the two sides,
and the data is transmitted through this reliable channel to ensure the security of the data.

3.4.3. Live Stream Acceleration Protocol

The Live Acceleration Protocol is the live forwarding function on FavorX. The live streaming
acceleration protocol has three roles: the live source, the forwarding group, and the client. Its
data is broadcasted within the forwarding group after being emitted from the live source node
and then pushed to the subscribers of the group by the nodes in the forwarding group.

Due to the varying number of viewers for each live streaming, the number of viewers could
also fluctuate during the streaming, thus the forwarding group should have the ability of node
elastic scalability, i.e. automatically expanding the number of nodes within the group when
the number of viewers increases, and reducing the number of members in the group when the
number of viewers decreases.

39

An elastic scalability algorithm is constructed during the subscription process. If the relay
node has enough bandwidth, it can choose to join the distribution group of the live broadcast.
Once it joins the group, it will have more chances to be subscribed by the client node and
serve more clients, thus gaining more traffic revenue. If all users of a node have unsubscribed,
then it can choose to exit the distribution group.

Since broadcasting of video content is required in the distribution group, a large amount of
bandwidth resources will be consumed. In order to avoid data duplication, the broadcasting of
data in the distribution group adopts a push/pull scheme, that is, when data needs to be
broadcast, the source node first pushes the hash value of the data to the target node. When the
target node receives the hash value, it checks whether the data exists. If the data does not
exist, it requests the data from the source node of the data, otherwise, it sends the existing
message to the node without reading the data.

In order to avoid malicious nodes sending invalid data to multicast groups to waste system
bandwidth for amplification attacks, all broadcast data within the group must be signed. To
enable offline verification of these data, FavorX makes the following provisions for the Live
Acceleration Protocol.

1. Each live source + forwarding group is referred to as a live channel, each of which
can have a name determined by the live source, and no two channels with the same
name can have the same live source.

2. The forwarding ID for each live channel is Signatureowner(sha256(group_name)), that
is, the signature of the live source for the hashed name of the live channel.

3. Users obtain and record the broadcasting name, source address, and forwarding group
ID in some ways and can verify the correctness of these data.

4. For each data segment Chunk in the broadcasting, the source needs to hash it and then
sign it to send in the group. The receiving nodes in the group need to verify the
correctness of the data and then decide whether to forward it or not.

Protocol Overview

The Live Streaming Protocol on FavorX consists of five operations primitives. These five
primitives are divided into two groups: the first group is user-related, including StartLive,
StopLive and SubscribeLive. The second group is for internal use among the forwarding
group, PushChunkHash and GetChunkByHash. The broadcaster starts or stops the live
streaming with StartLive and StopLive, respectively. Meanwhile, the users subscribe to or
unsubscribe from the video with SubscribeLive and UnsubscribeLive. The nodes within the
forwarding group achieve live streaming data synchronization through PushChunkHash and
GetChunkByHash.

StartLive

➔ Request:

Data Format:

40

None.

Sending Mode:

Multicast, initiated by the live source, broadcasted within the forwarding group.

Receiver Processing Process

The nodes within the forwarding group receiving the message will set to allow the data from
the live source to be converted and forwarded to other nodes.

StopLive

➔ Request:

Data Format:

None.

Sending Mode:

Multicast, initiated by the live source, broadcasted within the forwarding group.

Receiver Processing Process

When the nodes in the forwarding group receive the message, they broadcast it to notify the
nodes in the group that the live stream has ended. When the nodes in the group receive the
message, they notify all subscribed nodes that the live stream has ended.

Upon receiving the message, the subscribed nodes can unsubscribe the message.

SubscribeLive

➔ Request:

Data Format:

The ID of live stream group.

Sending Mode:

Multicast, from the client to the forwarding group

Receiver Processing Process

41

After the relay node receives this message, it decides whether it can participate in the
forwarding group according to its local resources (especially the upstream bandwidth usage).
If it can, it first joins the forwarding group. After successful joining, it returns to the requester
that the node is already a node in the broadcasting group.

Upon receiving this request, the nodes in the forwarding group will respond with success if
they agree to subscribe from the host, or return ERR_OUT_RESOURCE if they do not agree.

Due to the relay nodes in the routing process from the client node to the broadcast group node,
the client may receive multiple responses, so the client can select one or more of these nodes
to connect. The client can take data from one data source, and the other several can serve as
alternative data sources. When the data from the main data source is not smooth, it can switch
to the alternative data source to read the data.

➔ Response:

Data Format:

Live Stream ID

Sending Mode:

Unicast, sends back to the requestor from the forwarding node

Receiver Processing Algorithm:

42

Upon receiving the response, if the return value is ERR_OK, the node is recorded and based
on its own status, the node is determined to be the primary data source, then sends a request
to establish a Websocket connection and stores the connection information.

PushChunkHash

➔ Request:

Data Format:

{chunk_hash,signature}.

Sending Mode:

Multicast, broadcast between nodes in the forwarding group. Unicast, push from the
forwarding group to the client.

Receiver Processing Process

The receiver first verifies the validity of the signature. If valid, it checks if there is data
corresponding to the hash locally. If yes, it simply broadcasts the message, otherwise, it
requests to read the data and then broadcasts the message.

GetChunkByHash

➔ Request:

Data Format:

{chunkhash}.

Sending Mode:

Unicast, from client to the data sending end

43

Receiver Processing Process

After the receiver receives this request, it sends the data corresponding to the hash to the
requester.

Accounting Scheme

Apart from the live data, other commands are charged on a per-frame basis.

For live data, the live source will be deducted for the traffic fee.

The requester of the data needs to pay the traffic fee.

Attack and Defense

In order to avoid the forwarding nodes requesting extra traffic fees by forging
PushChunkHash, the Hash in the command needs to be signed.

Any node in the group will record and evaluate the credit value of other nodes in the group
locally. If the actual data and corresponding hashes transmitted from other nodes are
inconsistent, in addition to not forwarding the data, the credit value of the node will be
reduced and the traffic fee will be refused.

3.4.4. Protocol Expansion

3.4.4.1. Data Traffic Accounting

Accounting Basis
The accounting in FavorX is composed of two parts: fuel and unit price. The fuel in the
accounting is calculated according to the frame length, and the unit price will change with the
degree of network congestion, so the total cost paid by the payer is Gas* Gas_price. In order
to reduce the workload of on-chain accounting, FavorX adopts a scheme of off-chain small
payment and on-chain settlement.

44

FavorX has created Reducible Receipts, a mechanism that greatly reduces the storage and
accounting requirements on the chain, allowing service providers to continuously provide
services to consumers while consumers only need to provide the latest reducible receipt to
gain the benefits of all services. In addition, service providers can also merge receipts
from multiple consumers at the same time into a single set of receipts to reduce
storage and accounting costs on the chain.

Due to the delayed settlement of data, it may result in insufficient balance in the consumer's
account when settlement, leading to the failure of digital asset transfer, so nodes providing
services should expect a small part of the income to be unreceived, and in the system,
accounts with arrears will be recorded as well. Furthermore, accounts are divided into fund
accounts and application accounts in FavorX, with a small part of assets that cannot be
transferred agreed to be applicable to application payment only.

Definition

The payment of traffic charges from the client node to the service node is the implementation
of P2P charging, which is done by paying a cheque from the client node to the service node.
The payment process is broken down into the following steps:

1. The total traffic DT transmitted by the confirmed service nodes of each client node is
recorded in the system (on the chain), with the DT value defaulting to 0 if no
interaction has taken place.

2. When the client node and the service node are connected, the DT value interactively
recorded by both parties is actually always presented by the service node to the client
node;

3. After each segment of data T (256K by default) is transmitted by the service node, the
client node presents a signed receipt Receipts to the service node with the value
DT+nT where n is accumulated constantly

4. When the service node receives a new Receipts, it replaces the original Receipts of
the client node with the new Receipts

5. The service node presents the Receipts to the chain, and after the chain reads the value
in this Receipts and calculates the difference with the last traffic:

a. Deduct the traffic charges from the client node
b. Add the corresponding traffic charges to the service node account
c. Deduct the corresponding commission charges from the service node account
d. The total traffic on the chain is recorded as DT+nT

The reason for deducting the commission charges is to allow the service node to submit
the transaction receipt of the traffic to the chain after the traffic charges reach a certain
level。

3.4.4.2. Bandwidth Reward

Each node, depending on the amount of token it has pledged, will be assigned a certain
energy value. When the node pays for a traffic fee to the server after reading data from the
server, part of the energy value can be transferred to the service node, and the energy value

45

obtained by the service node will form its own computing power. With this computing power,
the system reward can be obtained. This part of the reward is called the bandwidth reward.
Definition:

This system rewards tokens to nodes based on their computational power at each block height,
and the probability of the reward each node can get is consistent with the ratio of its own
computational power to the total computational power of the network. Nodes can get
computational power by providing bandwidth service and receiving traffic fees from other
nodes.

Reward Algorithm:

1. The energy of node m

The energy value of a node is related to its current balance value. When the balance
value is greater than a certain basic data, the node energy value is Ebase, otherwise it is 0.
The fixed energy value Ebase is set to 10K in the implementation of FavorX. Ebase is the
balance of non-transferable assets in the node application account.

When the node pays for the data flow by signing the receipt, the node can transfer energy
to the service node. The transfer formula is as follows. Assuming that the node m has
signed receipts for K service nodes in the agreed time, the data flow of each receipt is
DT_i, and the total data flow is as follows:

The energy value obtainable by service node n from node m is:

2. Energy value obtained by the service node

When service node n serves L nodes in a certain period of time, the total energy value
obtained can be calculated:

，

In the entire network, there are a total of J service nodes in this period of time, and the
total computing power can be calculated as follows:

46

3. Reward Acquisition Method

Service node n tracks the hash H of each block height, then signs with its own private
key , and calculates:

When the above formula is established, the node sends a reward request to the chain:
(block height Height, block hash H, own signature SH), the chain node receives the
request, verifies whether the Height and H blocks are correct, then according to the
signature SH obtain the corresponding node address, find out the energy value of the
node and the total energy value of the system at that time, calculate whether the above
formula is established, if so, add a designated digital asset as a reward to the
corresponding node address.

3.4.4.3. Attack and Defense

Attackers can create a large number of client nodes to provide computing power for
conspiring service nodes in order to achieve a Sybil attack. The system adopts the following
scheme to increase the cost of Sybil attacks and make the attackers' returns lower than the
costs:

 Staking

Each node must possess a certain staking value (Bbase) in order to possess transferable
energy value. Therefore, generating a large number of nodes requires paying the
corresponding staking costs.

 Miners' Node Revenue Share

The system takes a 3% commission on the data flow fees collected from service nodes, so
that when the client nodes collude with the server nodes to cheat with a large amount of false
data flow, they will pay a higher cost. If the data flow fee of the transaction is less than a
certain value Paymentmin, a fixed fee will be deducted from the server node, which prevents
the client node from obtaining revenue for the server node at a low cost by using a small
amount of targeted data flow receipts.

 Transferable Energy

Once an attacker has gained energy through colluding client nodes and miners, after a period
of time, malicious nodes can withdraw their stakes. If the miner's energy values remain
constant, the attacker will gain permanent benefits after paying a one-time cost. The system
solves this problem by introducing transferable energy: once a miner's reward request is

47

passed on the chain and rewards have been obtained, the energy value for this portion will be
reset to zero.

3.5. Custom Chain
FavorX's in-built high-performance chain provides the system with decentralized storage
matching, data traffic accounting and reward capabilities. This chain is enabled with a
dedicated Favor consensus algorithm, featuring:
1) High Performance; 2) Low Bandwidth Requirement; 3) Fast Finalization; 4) Easily
Verifiable.

3.5.1.Consensus System Model

A certain amount of block time is divided into Epochs by the Favor consensus. Before the
start of each Epoch, at least a certain number of nodes will participate in the election, and all
successful nodes are called committee members (committee[a1]); in each block cycle, some
committee members can vote,[and these members are called Delegates. In each block cycle,
each node first calculates its own chance value for block production through the VRF
function, and then decides whether it needs to to send a vote request (VoteReq) to the agent
based on the chance value. The agent ranks the vote requests according to the chance values
for block production in all requests within a certain time period, and then sends the ranking
results back to the candidates. After collecting enough votes, the candidates calculate their
own weights based on the ranking results in their votes, and then propagate the blocks with
weight proofs to the network. The nodes in the network select the blocks with the highest

48

weight to be included in their own chains. The system model is based on the following
assumptions:

● All nodes are able to get the current total computing power of the whole network. The
computing power of each node can be obtained on the chain.

● The number of malicious nodes that can be aggregated does not exceed 25% of all the
nodes in the whole network.

● Dishonest agents can vote in any way they want, but cannot vote for two candidates
with the same ranking priority without being detected.

● All agent nodes are likely to be bribed to become malicious agents.
● As the network environment is asynchronous, multiple block production requests and

multiple blocks may be generated in the network at the same time. A specific node
may not receive a particular block broadcast,

● and some nodes may also refuse to send data that should be sent: for example, the
agent does not send the voting results, and the candidate does not broadcast the block,
etc.

3.5.2.Keywords

Next, we'll briefly describe the key items in the system as follows:

Epoch: We call a certain number of block cycles an epoch, in which a fixed committee is
elected from the block and different proxies are selected from the committee. The epoch
scheme enables each node to obtain proxy information in each block cycle in a low-cost and
clear manner.The epoch scheme enables each node to obtain agent information in a low-cost
and unambiguous way during each block cycle.

Candidates: Any node can obtain a new random number through the block information and
predefined VDF algorithm when the previous block is completed, calculate the block
opportunity, and determine whether to send a block request based on the value.T he node that
sends the block request is called a candidate. Within a block cycle, there are multiple
candidates.

Committee: The set of nodes that participated in the election successfully in the previous
period is called the committee.

Delegates: Nodes elected from the committee in a certain block cycle to handle all "vote
requests" and then vote to select different block makers are called delegates.

VoteReq: When a candidate believes it is sufficient and has a sufficient probability of block
success, it sends a block request to the delegate, and the request sent is called the vote request.

Vote: A delegate verifies each incoming voting request periodically, and sorts them based on
their value. The voting requests at the top of the list are signed and sent to the candidates, and
this process is called voting.

49

Campaign Cycle: The delegate waits for a period of time, during which they collect voting
requests from each candidate. This period is called the campaign cycle, and it determines the
block generation time.

Block: After collecting the voting results, each candidate forms a new block, which we call a
block. Since the set of agents may give multiple signatures for different candidates in
different orders, there will be multiple blocks in the same round.

Block Weight: The voting information of each block obtained in each round is called weight,
and the smaller the serial number, the higher the weight; within the same block height, the
block with a higher weight is more likely to be added to the blockchain.

Sign: The BLS signature scheme is adopted in the system. Thanks to the linear characteristics
of the BLS signature function, the signatures of multiple agents in the block can be combined
into one [a4] to save transmission bandwidth.

Keep-alive Fork: Any node can send a voting request. Any node will decide whether to
broadcast its own block according to the voting result. Therefore, there may be multiple
blocks competing at a height, which will prevent the block from failing due to the highest-
weight node failure. This measure to ensure activity is called a keep-alive fork.

Delayed Relay: When a node receives the block information, it forwards the information
after a delay of some time based on the weight of the block, which is called the Delayed
Relay. Delayed relay will promote the nodes with high weights to be propagated
preferentially in the network and reduce the propagation speed and range of the blocks with
low weights in the network.

3.5.3. Scheme Description

The whole Favor system is mainly divided into three parts: committee election part, secret
election and voting part, and block broadcasting part.

1. The committee election is a process in which nodes collaborate with each other to generate
a random number and use this number to create a committee on a decentralized network.

2. The secret election and voting is a process in which agent nodes and candidate nodes
collaborate to generate blocks with weights.

3. The block broadcasting is a process in which the nodes in the network preferentially
process the blocks with higher weights and suppress the propagation range of the blocks with
lower weights.

The secret election and voting process is a process of potential block generation through
interactive interaction between candidate nodes and proxy nodes. It is divided into three
stages: the preparation stage, the election stage, and the voting stage.

50

1. Preparation Stage: In each block production cycle, the node first obtains the opportunity
value of block production Op corresponding to its own ability value from the VDF of this
round.

2. Campaign Stage: The node with a higher Op value sends a bill to the agent and requests
the agent to vote, and the node requests the vote becomes a candidate.

3. Voting Stage: After receiving the voting response from the agent, the candidate calculates
the weight of its votes and enters the waiting state of block production according to the
delayed relay algorithm.

Next, we'll briefly introduce the key concepts involved in the solution:
Value: Each node has a verifiable computing power across the network, which is defined

in the application system and can be quickly verified by the nodes within the network. This
capacity may be effective storage capacity, bandwidth capacity, or even mortaged tokens. In
this scheme, effective storage is used as computing power. The capacity value of node M is
noted as .
OP: The node sighs the random number of the whole network to obtain a hash value:

.
Node M's hash value of the Rth round is recorded as Hmr , and the block production
opportunity of node M

:
Where, is an arbitrary value from 0 to , we can make the following convention, the
bigger the , the higher the probability of the node obtaining the block.

3.5.4. Analysis of Scheme

Favor Consensus has good adaptability, it can be used as an independent chain, or as a
Layer2 of other chains, when it is used as a Layer2 of other chains, the committee's election
can be conducted on Layer1. The consensus can also support two types of block production,
one is that any node with computing power can produce blocks, and the other is that only
members of the committee can produce blocks, which can control the scope of the block
producers and the range of blocks and transactions broadcast, furthermore, the number of
committee members can be reduced to the same number of proxy nodes, further reducing the
scope of blocks and broadcasting to achieve higher TPS performance. Implementers can
select according to their own performance and security requirements.

Another characteristic of the Favor consensus is its verifiability, since the agents sign the
election results and these signatures and weights are placed in the block header, any node can
obtain the validity of the block, and if it is finally determined by verifying the signature
information in the block header.

51

4. Economic Model
In FavorX, applications need to store pay storage fees, pay traffic fees for data distribution, or
pay service fees for services. Miners in the system earn revenue by providing storage,
bandwidth, or servers. Due to the bandwidth being a core resource in the system, miners will
be rewarded for providing bandwidth.

FavorX's ecology will utilize FavX as a fundamental circulating tool, which will be used for:
paying for data flow fees, paying for server API invocation fees, or paying for decentralized
server fees.

In FavorX, miners' profits will have a 3% return to the platform national treasury, of which
1% will be allocated to the block nodes of the built-in chain, distributed according to each
block height, while the rest will be allocated by the platform national treasury according to
the strategy agreed by the community, such as for destruction, development, and operation, or
additional rewards for miners, etc.

The total circulation of the system's total tokens is 800 million, of which 50% are generated
by miners through providing bandwidth and performing data distribution services, while the
rest are for early investors and liquidity providers. The distribution and release policy will be
determined by the community agreement.

Allocation and Release Strategies

Stage Tokens(M) Release Model

Seed Round
Investors

50 10% on TGE, then 5% per month

Round A Investors 100 10% on TGE, then 5% per month

ECO System 50 5% on TGE, then 5% permonth

Team 150 10% on TGE, then 5% per month

52

Liquidity & Airdrop 50 20% on TGE, then 10% per month

Reward for Miners 400 Halves per 1500 days. release
coeffiency added

5. Case Studios

5.1. Decentralized Service

FavorX's proxy mechanism for HTTP and Websocket can enable applications to access
services in a decentralized way by adding the following steps:

1) Develop the proxy function to forward requests from the application to the server and
forward the server response to the application nodes

2) Generate some node instances and deploy them all over the world
3) Form a group with these nodes and configure the group
4) Notify the GroupID of the group to the front end
5) Front end transformation, modify the original access URL to

http://localhost:1633/{original URL}, and keep the data format unchanged.

Through the above transformation, the application has the ability to access services in a
decentralized manner, and since the services are hidden, it can also prevent attacks on the
server.

After the above transformation, the server has the ability to access in a decentralized manner,
but it is still decentralized in itself, and it can achieve decentralization of the service itself in
another way.

The decentralization of the service itself lies in the decentralization of the database, and the
simplest way is to create different replicas sets for the database on different nodes. The
operations on the database can be transformed into operation logs, so that when different
nodes receive the block information, they can directly transform it into operation logs to
update the database on this node.

In order to ensure the consistency of the data, the node can generate a hash value for the local
file according to a certain policy. When each block height is reached, the master node needs
to generate this hash value, while the replica verifies the correctness of the hash rate.

53

5.2. Decentralized Metaverse Music Platform

SoundBox is an application for copyright management in the Metaverse. It has the ability to
read and play music files in real time from a variety of different data sources -- Spotify,
Dropbox, Metaverse's servers, as well as decentralized storage systems such as IPFS and
Arweave.

In SoundBox, all music files are licensed for playback, and information about music players,
times of play and play duration is also recorded. Player purchases, music licensing, and
payment of fees are performed on FavorX.

Since the information is all recorded on the chain and payments are also made on the chain, it
is possible to create a Royalty-Bearing NFT market -- FavorX tracks the owners of NFTs and
distributes the revenue pro rata to the owners of NFTs when the musics corresponding to the
NTFs earn revenue. This approach empowers a whole new concept for music NFTs and will
drive sales and marketing of music NFTs.

5.3. Decentralized Video Creation Platform

5.3.1.Main Theme

Inspired by Mastodon and DTube, FavorTube is a decentralized infrastructure-as-a-service
platform that supports content sharing, fan base management and patron services.

We believe that a true Web 3.0 platform should embrace the blockchain technology when
handling specific type of transactions, but not building the service entirely around the
blockchain & smart contract narrative. Peer-to-peer data transactions and distributed storage
are deployed without the necessity of visiting any layer of the blockchain.

Note: We are not trying to be the decentralised version of Youtube, Tiktok or Patreon, but
rather providing the construction framework and essential toolkits that enables community
members to organize and

5.3.2.Core Pillars of FavorTube

 Basic Functions:

● Decentralized ID to make sure of anonymous
● Censorship resistant content rendering network mainly based on P2P, rewarded by

Favor’s basic token.
● Permissionless stable coin payment gateway enabling seamless transaction between

users

54

 Advanced Features

● Studio Sites / Instances Nodes allowing more sophisticated content creator to host its
own channel and manages the fan base.

● User committee that ensures governance over publicly available contents.
● Algo-based content recommending flows
● Private-key for decryption of special contents

5.3.3.Economy Structure

Bandwidth sharer gets rewarded by Favor native tokens for net contribution to peer users.
(Like a mining machine!)

A small portion of user transactions are made mandatory to purchase the native tokens.

5.4. Decentralized Live Streaming

The decentralized technology allows for increased interactions between live streamers and
consumers, and enables them to share the revenue brought by growth together

5.4.1.Current Status

Recruitment, early companionship and customer acquisition are currently the most basic pain
points in live shows. When a newly recruited live streamer joins, both the streamers and the
operator are unsure whether the newcomer can become famous; in the early stage of the
broadcast, many fans are reluctant to participate in the interaction due to the insufficient
number of fans, leading to low confidence of the streamer and inability to persist; and the
operator also needs to get more shares from other streamers to be able to reap the rewards.

55

5.4.2.Decentralized Operation Strategy

In a decentralized system, NFTs can be used to solve the customer acquisition and streamer
recruitment challenges. When recruiting a live streamer, once both parties determine
intentions, you can have the streamer create some photos and talent video as an introduction
and take a certain percentage of future earnings as the subject matter to create NTFs . It is
agreed with the NTF purchasers: When the NFT sales meet a certain base amount, the
streamer will start broadcasting; if the sales cannot be completed within the specified period
of time, the streamer will not start broadcasting, and the funds used to purchase NTFs will be
returned.

In this way, the streamer knows his/her popularity before starting to broadcast, and
meanwhile the sales process of NFTs is also the self-presentation and customer acquisition
process for the streamer. For the operating platform, risks can also be avoided in advance,
and therefore the share of the streamer can also be reduced. For fans, buying NFTs will no
longer be just a sentimental purchase, but an investment.

After the streamers start broadcasting, interactions can be rewarded in a decentralized way,
which will promote the interactions between users and streamers. For example, each fan has a
certain amount of energy every day, and when a fan interacts with an streamer, the energy
value can be transferred and distributed to the streamer and generate computing power for
him/her. Similarly, each streamer also has an energy value every day, which can be
transferred and distributed by the streamer to fans through interactions, generating computing
power for the fans and allowing them to be rewarded by the system as well.

The above scheme of rewarding interactions will give fans a chance to earn rewards in the
process of interacting with streamers, motivating the desire of fans to interact and also
enhancing the confidence and willingness of the streamers to start broadcasting.

5.4.3.Decentralized Platform Strategy

Furthermore, the decentralized system would allow a streamer to own a platform entirely
belonged to himself/herself, rather than having a platform on top of an existing one. The
advantages for a streamer to have his/her own platform are self-evident: the streamer can
have a fan base that is completely owned by himself/herself; the streamer is not subject to the
control of third-party platforms and cannot be banned; the streamer doesn’t have to worry
about being blocked for a decentralized access; and the streamer can gain revenue from
subscriptions or rewards from around the world through the blockchain. As for the original
operating platforms, they can earn revenue by providing aggregations, promotions, and
search services for the platforms of these streamers, without paying for storage, bandwidth,
and customer acquisition costs, and will also have high enough profits under the condition of
low sharing.

56

6. Conclusion
This paper introduces the unified transmission protocol of FavorX's decentralized hybrid
data. On the basis of P2P broadcasting transmission in decentralized networks, various data
transmission models are discussed and designed to meet the transmission requirements of
different data. Based on this, a accounting and reward scheme is designed to motivate miners
to voluntarily provide resources for the network to achieve decentralized system construction.

On the basis of the completion of the scheme, this paper discusses the valuable application
scenarios based on FavorX, and how to use these application scenarios to realize the killer
application of Web3. The standardized service decentralized model allows developers to
develop their own Web3 applications in existing ways, tools, and protocol stacks without
considering the actual transmission process and implementation of data and messages.

FavorX allows application developers to connect existing various public chains, decentralize
storage, or zero-knowledge proof modules, and combine the functions of these modules to
provide a unified and complete service for the application.

